skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Groebner, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Subglacial seismicity presents the opportunity to monitor inaccessible glacial beds at the epicentral location and time. Glaciers can be underlain by rock or till, a first order control on bed mechanics. Velocity-weakening, necessary for unstable slip, has been shown for each bed type, but is much stronger and evolves over more than an order of magnitude longer distances for till beds. Utilizing a de-stiffened double direct shear apparatus, we found conditions for instability at freezing temperatures and high slip rates for both bed types. During stick–slip stress-drops, we recorded acoustic emissions with piezoelectric transducers frozen into the ice. The two populations of event waveforms appear visually similar and overlap in their statistical features. We implemented a suite of supervised machine learning algorithms to classify the bed type of recorded waveforms and spectra, with prediction accuracy between 65–80%. The Random Forest Classifier is interpretable, showing the importance of initial oscillation peaks and higher frequency energy. Till beds have generally higher friction and resulting stress-drops, with more impulsive first arrivals and more high frequency content compared to rock emissions, but rock beds can produce many till-like events. Seismic signatures could enhance interpretation of bed conditions and mechanics from subglacial seismicity. 
    more » « less
  2. Abstract With the rise of data volume and computing power, seismological research requires more advanced skills in data processing, numerical methods, and parallel computing. We present the experience of conducting training workshops in various forms of delivery to support the adoption of large-scale high-performance computing (HPC) and cloud computing, advancing seismological research. The seismological foci were on earthquake source parameter estimation in catalogs, forward and adjoint wavefield simulations in 2D and 3D at local, regional, and global scales, earthquake dynamics, ambient noise seismology, and machine learning. This contribution describes the series of workshops delivered as part of research projects, the learning outcomes for participants, and lessons learned by the instructors. Our curriculum was grounded on open and reproducible science, large-scale scientific computing and data mining, and computing infrastructure (access and usage) for HPC and the cloud. We also describe the types of teaching materials that have proven beneficial to the instruction and the sustainability of the program. We propose guidelines to deliver future workshops on these topics. 
    more » « less
    Free, publicly-accessible full text available June 5, 2026
  3. Abstract We introduce BPMF (backprojection and matched filtering)—a complete and fully automated workflow designed for earthquake detection and location, and distributed in a Python package. This workflow enables the creation of comprehensive earthquake catalogs with low magnitudes of completeness using no or little prior knowledge of the study region. BPMF uses the seismic wavefield backprojection method to construct an initial earthquake catalog that is then densified with matched filtering. BPMF integrates recent machine learning tools to complement physics-based techniques, and improve the detection and location of earthquakes. In particular, BPMF offers a flexible framework in which machine learning detectors and backprojection can be harmoniously combined, effectively transforming single-station detectors into multistation detectors. The modularity of BPMF grants users the ability to control the contribution of machine learning tools within the workflow. The computation-intensive tasks (backprojection and matched filtering) are executed with C and CUDA-C routines wrapped in Python code. This leveraging of low-level, fast programming languages and graphic processing unit acceleration enables BPMF to efficiently handle large datasets. Here, we first summarize the methodology and describe the application programming interface. We then illustrate BPMF’s capabilities to characterize microseismicity with a 10 yr long application in the Ridgecrest, California area. Finally, we discuss the workflow’s runtime scaling with numerical resources and its versatility across various tectonic environments and different problems. 
    more » « less